What is eclipse?
Solar eclipse
Central eclipse is often used as a generic term for a total, annular, or hybrid eclipse. This is, however, not completely correct: the definition of a central eclipse is an eclipse during which the central line of the umbra touches the Earth's surface. It is possible, though extremely rare, that part of the umbra intersects with the Earth (thus creating an annular or total eclipse), but not its central line. This is then called a non-central total or annular eclipse. Gamma is a measure of how centrally the shadow strikes. The last (umbral yet) non-central solar eclipse was on April 29, 2014. This was an annular eclipse. The next non-central total solar eclipse will be on April 9, 2043.
Total solar eclipses are rare events. Although they occur somewhere on Earth every 18 months on average, it is estimated that they recur at any given place only once every 360 to 410 years, on average.The total eclipse lasts for only a maximum of a few minutes at any location, because the Moon's umbra moves eastward at over 1700 km/h. Totality currently can never last more than 7 min 32 s. This value changes over the millennia and is currently decreasing. By the 8th millennium, the longest theoretically possible total eclipse will be less than 7 min 2 s. The last time an eclipse longer than 7 minutes occurred was June 30, 1973 (7 min 3 sec). Observers aboard a Concorde supersonic aircraft were able to stretch totality for this eclipse to about 74 minutes by flying along the path of the Moon's umbra. The next total eclipse exceeding seven minutes in duration will not occur until June 25, 2150. The longest total solar eclipse during the 11,000 year period from 3000 BC to at least 8000 AD will occur on July 16, 2186, when totality will last 7 min 29 s. For comparison, the longest total eclipse of the 20th century at 7 min 8 s occurred on June 20, 1955, and there are no total solar eclipses over 7 min in duration in the 21st century.
Eclipses have been interpreted as omens, or portents. The ancient Greek historian Herodotus wrote that Thales of Miletus predicted an eclipse that occurred during a battle between the Medes and the Lydians. Both sides put down their weapons and declared peace as a result of the eclipse.The exact eclipse involved remains uncertain, although the issue has been studied by hundreds of ancient and modern authorities. One likely candidate took place on May 28, 585 BC, probably near the Halys river in Asia Minor. An eclipse recorded by Herodotus before Xerxes departed for his expedition against Greece, which is traditionally dated to 480 BC, was matched by John Russell Hind to an annular eclipse of the Sun at Sardis on February 17, 478 BC. Alternatively, a partial eclipse was visible from Persia on October 2, 480 BC. Herodotus also reports a solar eclipse at Sparta during the Second Persian invasion of Greece. The date of the eclipse (August 1, 477 BC) does not match exactly the conventional dates for the invasion accepted by historians.
The last solar eclipse was an annular eclipse on Dec. 26, 2019, which was visible from Asia and Australia. The last total solar eclipse was the "Great South American Eclipse" on July 2, 2019, which was visible almost exclusively over South America. You can see a complete list of the upcoming solar eclipses on NASA's eclipse website, which provides information about solar eclipses, including detailed maps of each eclipse path.
The first known telescopic observation of a total solar eclipse was made in France in 1706. Nine years later, English astronomer Edmund Halley accurately predicted and observed the solar eclipse of May 3, 1715. By the mid-19th century, scientific understanding of the Sun was improving through observations of the Sun's corona during solar eclipses. The corona was identified as part of the Sun's atmosphere in 1842, and the first photograph (or daguerreotype) of a total eclipse was taken of the solar eclipse of July 28, 1851.Spectroscope observations were made of the solar eclipse of August 18, 1868, which helped to determine the chemical composition of the Sun.
A solar eclipse occurs when the moon gets between Earth and the sun, and the moon casts a shadow over Earth. A solar eclipse can only take place at the phase of new moon, when the moon passes directly between the sun and Earth and its shadows fall upon Earth’s surface. But whether the alignment produces a total solar eclipse, a partial solar eclipse or an annular solar eclipse depends on several factors, all explained below.
The Moon's orbit around the Earth is slightly elliptical, as is the Earth's orbit around the Sun. The apparent sizes of the Sun and Moon therefore vary. The magnitude of an eclipse is the ratio of the apparent size of the Moon to the apparent size of the Sun during an eclipse. An eclipse that occurs when the Moon is near its closest distance to Earth (i.e., near its perigee) can be a total eclipse because the Moon will appear to be large enough to completely cover the Sun's bright disk or photosphere; a total eclipse has a magnitude greater than or equal to 1.000. Conversely, an eclipse that occurs when the Moon is near its farthest distance from Earth (i.e., near its apogee) can only be an annular eclipse because the Moon will appear to be slightly smaller than the Sun; the magnitude of an annular eclipse is less than 1.
Historical eclipses are a very valuable resource for historians, in that they allow a few historical events to be dated precisely, from which other dates and ancient calendars may be deduced.A solar eclipse of June 15, 763 BC mentioned in an Assyrian text is important for the chronology of the ancient Near East.There have been other claims to date earlier eclipses. The Book of Joshua 10:13 describes an event that a group of University of Cambridge scholars concluded to be the annular solar eclipse that occurred on 30 October 1207 BC.The Chinese king Zhong Kang supposedly beheaded two astronomers, Hsi and Ho, who failed to predict an eclipse 4,000 years ago.Perhaps the earliest still-unproven claim is that of archaeologist Bruce Masse, who putatively links an eclipse that occurred on May 10, 2807 BC with a possible meteor impact in the Indian Ocean on the basis of several ancient flood myths that mention a total solar eclipse.
NASA's Solar Eclipse Bulletins were special publications issued periodically that focused on major upcoming solar eclipses. Each bulletin contained detailed eclipse predictions, local circumstances, maps and climatological data along the eclipse path. The NASA eclipse bulletins ended with the 2010 eclipse bulletin.
Since looking directly at the Sun can lead to permanent eye damage or blindness, special eye protection or indirect viewing techniques are used when viewing a solar eclipse. It is safe to view only the total phase of a total solar eclipse with the unaided eye and without protection. This practice must be undertaken carefully, though the extreme fading of the solar brightness by a factor of over 100 times in the last minute before totality makes it obvious when totality has begun and it is for that extreme variation and the view of the solar corona that leads people to travel to the zone of totality (the partial phases span over two hours while the total phase can only last a maximum of 7.5 minutes for any one location and is usually less). People referred to as eclipse chasers or umbraphiles will travel even to remote locations to observe or witness predicted central solar eclipses.
During a total solar eclipse, the Moon's shadow covers only a small fraction of the Earth. The Earth continues to receive at least 92 percent of the amount of sunlight it receives without an eclipse – more if the penumbra of the Moon's shadow partly misses the Earth. Seen from the Moon, the Earth during a total solar eclipse is mostly brilliantly illuminated, with only a small dark patch showing the Moon's shadow. The brilliantly-lit Earth reflects a lot of light to the Moon. If the corona of the eclipsed Sun were not present, the Moon, illuminated by earthlight, would be easily visible from Earth. This would be essentially the same as the earthshine which can frequently be seen when the Moon's phase is a narrow crescent. In reality, the corona, though much less brilliant than the Sun's photosphere, is much brighter than the Moon illuminated by earthlight. Therefore, by contrast, the Moon during a total solar eclipse appears to be black, with the corona surrounding it.
Comments
Post a Comment