Plants reproduction!

Reproduction in plants

Natural vegetative reproduction is a process mostly found in herbaceous and woody perennial plants, and typically involves structural modifications of the stem or roots and in a few species leaves. Most plant species that employ vegetative reproduction do so as a means to perennialize the plants, allowing them to survive from one season to the next and often facilitating their expansion in size. A plant that persists in a location through vegetative reproduction of individuals constitutes a clonal colony; a single ramet, or apparent individual, of a clonal colony is genetically identical to all others in the same colony. The distance that a plant can move during vegetative reproduction is limited, though some plants can produce ramets from branching rhizomes or stolons that cover a wide area, often in only a few growing seasons. In a sense, this process is not one of reproduction but one of survival and expansion of biomass of the individual. When an individual organism increases in size via cell multiplication and remains intact, the process is called vegetative growth. However, in vegetative reproduction, the new plants that result are new individuals in almost every respect except genetic. A major disadvantage to vegetative reproduction, is the transmission of pathogens from parent to offspring; it is uncommon for pathogens to be transmitted from the plant to its seeds (in sexual reproduction or in apomixis), though there are occasions when it occurs.[1]

Unlike animals, plants are immobile, and cannot seek out sexual partners for reproduction. In the evolution of early plants, abiotic means, including water and wind, transported sperm for reproduction. The first plants were aquatic, as described in the page "Evolutionary history of plants", and released sperm freely into the water to be carried with the currents. Primitive land plants like liverworts and mosses had motile sperm that swam in a thin film of water or were splashed in water droplets from the male reproduction organs onto the female organs. As taller and more complex plants evolved, modifications in the alternation of generations evolved; in the Paleozoic era progymnosperms reproduced by using spores dispersed on the wind. The seed plants including seed ferns, conifers and cordaites, which were all gymnosperms, evolved 350 million years ago; they had pollen grains that contained the male gametes for protection of the sperm during the process of transfer from the male to female parts. It is believed that insects fed on the pollen, and plants thus evolved to use insects to actively carry pollen from one plant to the next. Seed producing plants, which include the angiosperms and the gymnosperms, have a heteromorphic alternation of generations with large sporophytes containing much-reduced gametophytes. Angiosperms have distinctive reproductive organs called flowers, with carpels, and the female gametophyte is greatly reduced to a female embryo sac, with as few as eight cells. The male gametophyte consists of the pollen grains. The sperm of seed plants are non-motile, except for two older groups of plants, the Cycadophyta and the Ginkgophyta, which have flagellated sperm.

Asexual reproduction in plants

Reproduction in plants is either asexual or sexual. Asexual reproduction in plants involves a variety of widely disparate methods for producing new plants identical in every respect to the parent. Sexual reproduction, on the other hand, depends on a complex series of basic cellular events, involving chromosomes and their genes, that take place within an elaborate sexual apparatus evolved precisely for the development of new plants in some respects different from the two parents that played a role in their production. (For an account of the common details of asexual and sexual reproduction and the evolutionary significance of the two methods, see reproduction.)

In asexual reproduction male and female gametes do not fuse, as they do in sexual reproduction. Asexual reproduction may occur through Binary Fission, budding, fragmentation, spore formation, Regeneration and vegetative propagation. Plants have two main types of asexual reproduction in which new plants are produced that are genetically identical clone of the parent individual. Vegetative reproduction involves a vegetative piece of the original plant (budding, tillering, etc.) and is distinguished from apomixis, which is a replacement of sexual reproduction, and in some cases involves seeds. Apomixis appears in many plant species and also in some non-plant organisms. For apomixis and similar processes in non-plant organisms, see parthenogenesis.

Sexual Reproduction in Flowering Plants - Study Material for NEET ...

Plant reproduction is the process by which plants generate new individuals, or offspring. Reproduction is either sexual or asexual. Sexual reproduction is the formation of offspring by the fusion of gametes . Asexual reproduction is the formation of offspring without the fusion of gametes. Sexual reproduction results in offspring genetically different from the parents. Asexual offspring are genetically identical except for mutation. In higher plants, offspring are packaged in a protective seed, which can be long lived and can disperse the offspring some distance from the parents. In flowering plants (angiosperms), the seed itself is contained inside a fruit, which may protect the developing seeds and aid in their dispersal.

Advantages and disadvantages of asexual reproduction in plants ...

Asexual Reproduction The ability to produce new individuals asexually is common in plants. Under appropriate experimental conditions, nearly every cell of a flowering plant is capable of regenerating the entire plant. In nature, new plants may be regenerated from leaves, stems, or roots that receive an appropriate stimulus and become separated from the parent plant. In most cases, these new plants arise from undifferentiated parenchyma cells, which develop into buds that produce roots and shoots before or after separating from the parent. New plants can be produced from aboveground or belowground horizontal runners (stolons of strawberries, rhizomes of many grasses), tubers (potato, Jerusalem artichoke, dahlia), bulbs (onion, garlic), corms (crocus, gladiola), bulbils on the shoot (lily, many grasses), parenchyma cells in the leaves (Kalanchoe, African violet, jade plant) and inflorescence (arrowhead). Vegetative propagation is an economically important means of replicating valuable agricultural plants, through cuttings, layering, and grafting . Vegetative reproduction is especially common in aquatic vascular plants (for example, surfgrass and eelgrass), from which fragments can break off, disperse in the current, and develop into new whole plants. A minority of flowering plants can produce seeds without the fusion of egg and sperm (known as parthenocarpy or agamospermy). This occurs when meiosis in the ovule is interrupted, and a diploid egg cell is produced, which functions as a zygote without fertilization. Familiar examples include citrus, dandelion, hawkweed, buttercup, blackberry/raspberry, and sorbus. Agamospermous species are more common at high elevations and at high latitudes, and nearly all have experienced a doubling of their chromosome number (tetraploidy) in their recent evolutionary history. These species experience evolutionary advantages and disadvantages similar to those of selfers.

Plants have two main types of asexual reproduction: vegetative reproduction and apomixis. Vegetative reproduction results in new plant individuals without the production of seeds or spores. Many different types of roots exhibit vegetative reproduction. The corm is used by gladiolus and garlic. Bulbs, such as a scaly bulb in lilies and a tunicate bulb in daffodils, are other common examples of this type of reproduction. A potato is a stem tuber, while parsnip propagates from a taproot. Ginger and iris produce rhizomes, while ivy uses an adventitious root (a root arising from a plant part other than the main or primary root), and the strawberry plant has a stolon, which is also called a runner.

Many plants are able to propagate themselves using asexual reproduction. This method does not require the investment required to produce a flower, attract pollinators, or find a means of seed dispersal. Asexual reproduction produces plants that are genetically identical to the parent plant because no mixing of male and female gametes takes place. Traditionally, these plants survive well under stable environmental conditions when compared with plants produced from sexual reproduction because they carry genes identical to those of their parents.

Comments

Popular posts from this blog

What we know about my computer

What's physics! 🙄

Do u know indian cricket!